1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use merkletree::{hash::Algorithm, merkle, merkle::VecStore, proof::Proof};
use std::{fmt, iter::FromIterator};
use thiserror::Error;
use tiny_keccak::{Hasher, Keccak};
#[derive(Clone)]
struct KeccakAlgorithm(Keccak);
impl fmt::Debug for KeccakAlgorithm {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Keccak256 Algorithm")
}
}
impl KeccakAlgorithm {
pub fn new() -> KeccakAlgorithm {
KeccakAlgorithm(Keccak::v256())
}
}
impl Default for KeccakAlgorithm {
fn default() -> KeccakAlgorithm {
KeccakAlgorithm::new()
}
}
impl std::hash::Hasher for KeccakAlgorithm {
#[inline]
fn write(&mut self, msg: &[u8]) {
self.0.update(msg)
}
#[inline]
fn finish(&self) -> u64 {
unimplemented!()
}
}
type MerkleItem = [u8; 32];
impl Algorithm<MerkleItem> for KeccakAlgorithm {
#[inline]
fn hash(&mut self) -> MerkleItem {
let mut res: [u8; 32] = [0; 32];
self.0.clone().finalize(&mut res);
res
}
#[inline]
fn reset(&mut self) {
self.0 = Keccak::v256()
}
fn leaf(&mut self, leaf: MerkleItem) -> MerkleItem {
leaf
}
fn node(&mut self, left: MerkleItem, right: MerkleItem, _height: usize) -> MerkleItem {
use std::hash::Hasher;
if left == right {
left
} else {
let mut node_vec = vec![left.to_vec(), right.to_vec()];
node_vec.sort();
let flatten_node_vec: Vec<u8> = node_vec.into_iter().flatten().collect();
self.write(&flatten_node_vec);
self.hash()
}
}
}
type ExternalMerkleTree =
merkletree::merkle::MerkleTree<MerkleItem, KeccakAlgorithm, VecStore<MerkleItem>>;
#[derive(Debug, Clone)]
enum Tree {
SingleItem(MerkleItem),
MerkleTree(ExternalMerkleTree),
}
#[derive(Debug, Error, Eq, PartialEq)]
pub enum Error {
#[error("No leaves were provided")]
ZeroLeaves,
}
#[derive(Debug)]
pub struct MerkleTree {
tree: Tree,
root: MerkleItem,
}
impl MerkleTree {
pub fn new(data: &[MerkleItem]) -> Result<MerkleTree, Error> {
let mut leaves: Vec<MerkleItem> = data.to_owned();
leaves.sort_unstable();
leaves.dedup_by(|a, b| a == b);
let tree = match leaves.len() {
0 => return Err(Error::ZeroLeaves),
1 => Tree::SingleItem(leaves.remove(0)),
_ => {
let merkletree = merkle::MerkleTree::from_iter(leaves);
Tree::MerkleTree(merkletree)
}
};
let root: MerkleItem = match &tree {
Tree::SingleItem(root) => root.to_owned(),
Tree::MerkleTree(merkletree) => merkletree.root(),
};
Ok(MerkleTree { tree, root })
}
pub fn root(&self) -> MerkleItem {
self.root
}
pub fn verify(&self, proof: (Vec<MerkleItem>, Vec<bool>)) -> bool {
let proof = Proof::new(proof.0, proof.1);
proof.validate::<KeccakAlgorithm>()
}
pub fn proof(&self, i: usize) -> (Vec<MerkleItem>, Vec<bool>) {
match &self.tree {
Tree::SingleItem(_) => (vec![], vec![]),
Tree::MerkleTree(merkle) => {
let proof = merkle.gen_proof(i);
let path = proof.path();
let lemma = proof.lemma();
(lemma.to_owned(), path.to_owned())
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
use hex::FromHex;
#[test]
fn it_returns_error_on_zero_leaves() {
let error = MerkleTree::new(&[]).expect_err("ZeroLeaves error expected");
assert_eq!(Error::ZeroLeaves, error);
}
#[test]
fn it_generates_correct_merkle_tree_that_correlates_with_js_impl() {
let h1 = <[u8; 32]>::from_hex(
"71b1b2ad4db89eea341553b718f51f4f0aac03c6a596c4c0e1697f7b9d9da337",
)
.unwrap();
let h2 = <[u8; 32]>::from_hex(
"778b613574ae22c119efb252f2a56cb05b0d137f8494c0193f4e015c49f43453",
)
.unwrap();
let top = MerkleTree::new(&[h1, h2]).expect("Should create MerkleTree");
let root = hex::encode(&top.root());
assert_eq!(
root, "70d6549669561c65fdc687b87743b67e494e1f4be5d19a2955507220e57baaa6",
"should generate the correct root"
);
let proof = top.proof(0);
let verified = top.verify(proof);
assert!(verified, "should verify proof successfully");
}
#[test]
fn it_generates_correct_merkle_tree_with_duplicate_leaves() {
let h1 = <[u8; 32]>::from_hex(
"71b1b2ad4db89eea341553b718f51f4f0aac03c6a596c4c0e1697f7b9d9da337",
)
.unwrap();
let h2 = <[u8; 32]>::from_hex(
"778b613574ae22c119efb252f2a56cb05b0d137f8494c0193f4e015c49f43453",
)
.unwrap();
let top = MerkleTree::new(&[h1, h2, h2]).expect("Should create MerkleTree");
let root = hex::encode(&top.root());
assert_eq!(
root, "70d6549669561c65fdc687b87743b67e494e1f4be5d19a2955507220e57baaa6",
"should generate the correct root"
);
let proof = top.proof(0);
let verified = top.verify(proof);
assert!(verified, "should verify proof successfully");
}
#[test]
fn it_generates_correct_merkle_tree_with_odd_leaves() {
let h1 = <[u8; 32]>::from_hex(
"13c21db99584c9bb3e9ad98061f6ca39364049b328b74822be6303a4da18014d",
)
.unwrap();
let h2 = <[u8; 32]>::from_hex(
"b1bea7b8b58cd47d475bfe07dbe6df33f50f7a76957c51cebe8254257542fd7d",
)
.unwrap();
let h3 = <[u8; 32]>::from_hex(
"c455ef23d4db0091e1e25ef5d652a2832a1fc4fa82b8e66c290a692836e0cbe6",
)
.unwrap();
let top = MerkleTree::new(&[h1, h2, h3]).expect("Should create MerkleTree");
let root = hex::encode(&top.root());
assert_eq!(
root, "e68ea33571084e5dea276b089a10fa7be9d59accf3d7838c0d9b050bf72634a1",
"should generate the correct root"
);
let proof = top.proof(0);
let verified = top.verify(proof);
assert!(verified, "should verify proof successfully");
}
}